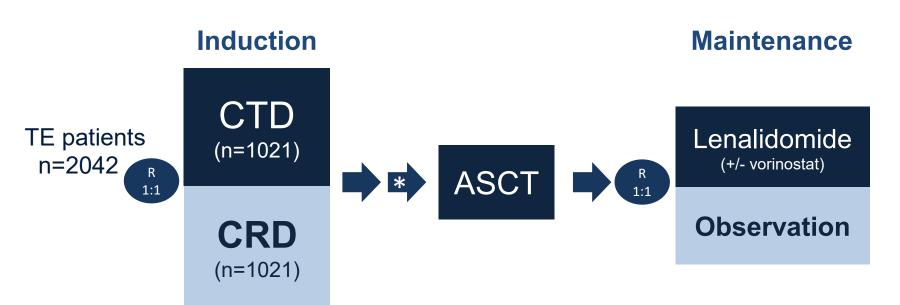


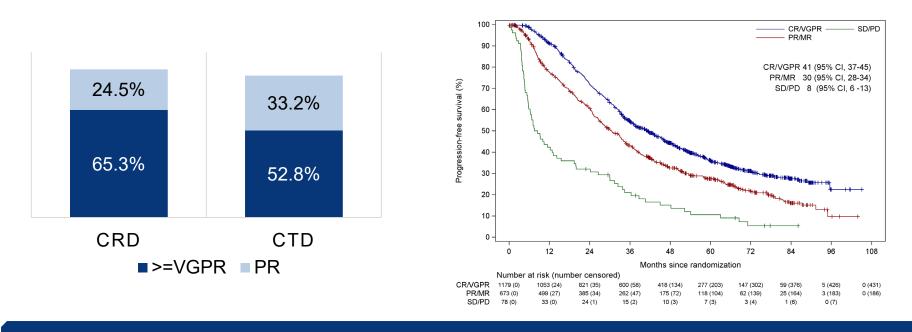
Lenalidomide induction and maintenance maximizes outcome for newly diagnosed transplant eligible myeloma patients irrespective of risk status: Long-term follow-up of the Myeloma XI trial


Graham Jackson¹, Charlotte Pawlyn^{2,3}, David Cairns⁴, John Jones², Bhuvan Kishore⁵, Mamta Garg⁶, Cathy Williams⁷, Kamaraj Karunanithi⁸, Jindriska Lindsay⁹, Nigel Russell⁷, Matthew Jenner¹⁰, Gordon Cook⁴, Mark Drayson¹¹, Roger Owen¹², Walter Gregory⁴, Martin Kaiser^{2,3} Faith Davies¹³ and Gareth Morgan¹³

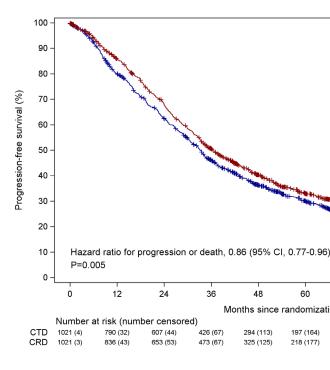
Background

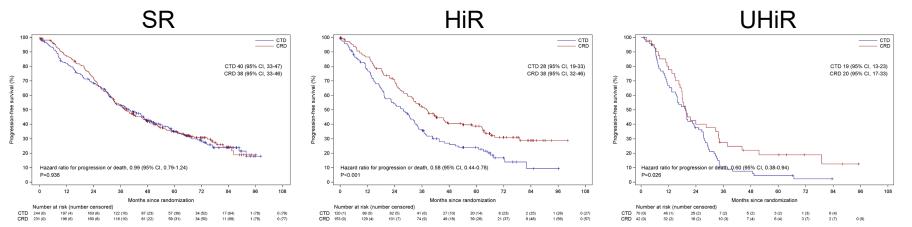
- Immunomodulatory (IMiD) compounds are effective therapies for multiple myeloma (MM) acting via modulation of the CUL4 E3-ubiquitin ligase cereblon.
- Based on their structure, individual IMiD compounds have different substrate specificities altering both their efficacy and side effect profile. These mechanistic differences impact the optimum sequencing of these agents as induction and maintenance.
- Within the UK NCRI Myeloma XI trial we compared triplet induction regimens containing Lenalidomide (Len) or Thalidomide (Thal) and maintenance treatment with Len or observation
- With extensive long term follow up data we have explored the interaction of the induction and maintenance use of Thal and Len before and after autologous stem cell transplant (ASCT).

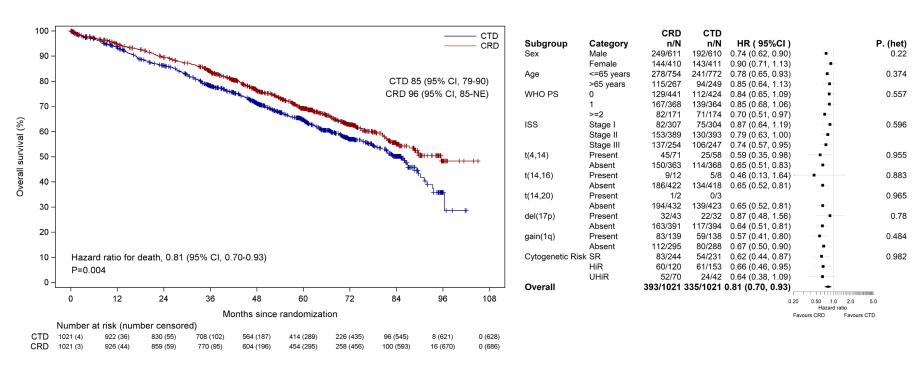
Myeloma XI

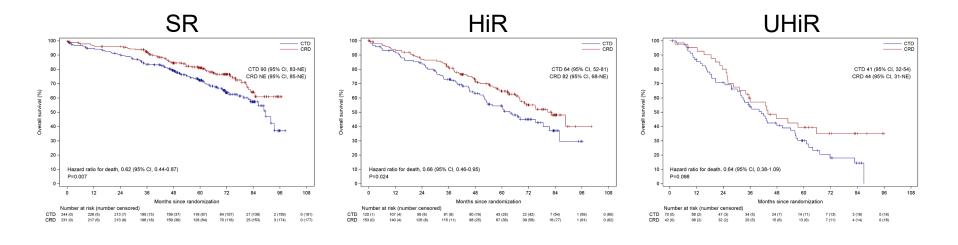

• Myeloma XI is a phase III trial with pathways for transplant eligible (TE) and transplant ineligible (TNE) newly diagnosed myeloma patients. The transplant eligible pathway is presented in this analysis.

CTD, cyclophosphamide, thalidomide, dexamethasone: CRD, cyclophosphamide, lenaldidomide, dexamethasone. *Patients with a suboptimal response to induction (<VGPR) were eligible for intensification. Patients with PR/MR were randomised to CVD (cyclophosphamide, bortezomib and dexamethasone) or no further therapy prior to ASCT. Patients with SD/PD all received CVD.

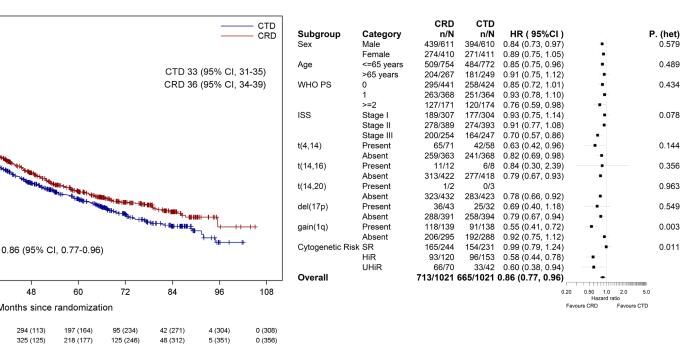

- The study was powered for the primary endpoints PFS and OS
- Analyses by molecular risk strata were pre-specified. Adverse molecular risk lesions were defined as gain(1q), t(4;14), t(14;16), t(14;20), or del(17p): standard risk (SR, no adverse risk lesions), high risk (HiR, one adverse risk lesion), or ultra-high risk (UHiR, two or more adverse risk lesions).
- The median follow up for this analysis is 67 months (interguartile range 52-82) for the induction randomization and 45 months (interguartile range 32-63) for the maintenance randomization.

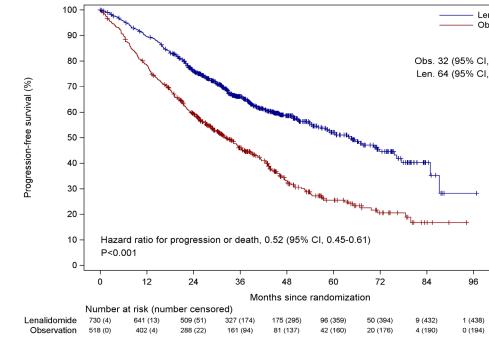

Response at the end of induction was associated with outcome




Contact

1. Department of Haematology, Newcastle University, Newcastle; 2. The Institute of Cancer Research, London; 3. The Royal Marsden Hospital London; 4. Clinical Trials Research Unit, Leeds Institute of Clinical Trials Research, University of Leeds, Leeds; 5. University Hospital Birmingham NHS Foundation Trust, Birmingham; 6. Leicester Royal Infirmary, Leicester; 7. Centre for Clinical Haematology, Nottingham University Hospital, Nottingham; 8. University Hospital of North Midlands, Stoke-on-Trent; 9. East Kent Hospitals University NHS Foundation Trust, Canterbury; 10. University Hospital Southampton NHS Foundation Trust, Southampton; 11. Clinical Immunology, University of Birmingham, Birmingham; 12. St James's University Hospital, Leeds; 13. Perlmutter Cancer Center, NY Langone Health, New York, USA

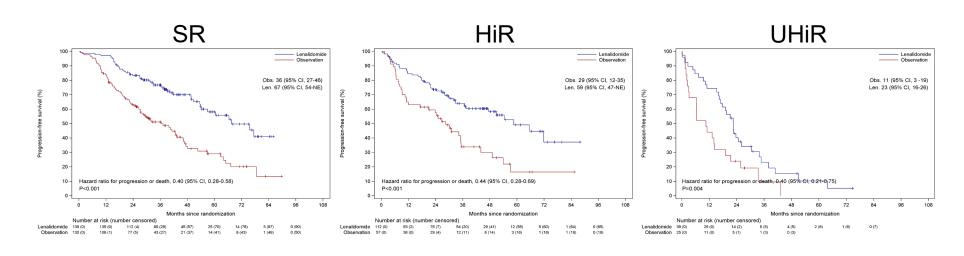

Acknowledgements


The study was carried out on behalf of the UK NCRI Haematological Oncology Clinical Studies Group. We would like to thank all the patients and staff at over 100 centres throughout the UK whose participation made this study possible. We are grateful to all principle investigators for their dedication and commitment to recruiting patients to the study. Conflicts

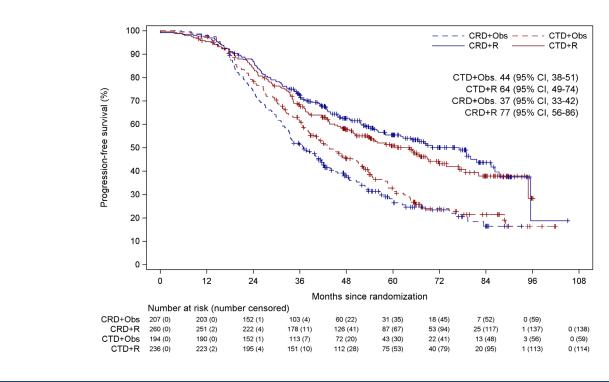
Email: graham.jackson@newcastle.ac.uk, charlotte.pawlyn@icr.ac.uk

GHJ has received honoraria from Celgene, Amgen, Roche, Janssen, Sanofi. For full details of other authors please see abstract book.

CRD was associated with significantly longer PFS than CTD: HR 0.86



 Significant heterogeneity in PFS outcome was identified between molecular risk groups; patients with HiR and UHiR benefitted the most from induction with CRD rather than CTD


CRD was associated with significantly longer OS than CTD: HR 0.81

Patients in all risk groups had an OS benefit with CRD vs CTD

The benefit of Lenalidomide maintenance over observation was consistent across all risk groups

Optimum outcomes were seen in those receiving Len as both induction and maintenance therapy

Conclusions

- With long term follow up CRD induction for newly diagnosed transplant eligible myeloma patients was associated with both a PFS and OS benefit compared to CTD and was better tolerated.
- The PFS impact of CRD was particularly notable in patients with high and ultra-high risk disease. The OS benefit was consistent across all risk groups.
- Lenalidomide maintenance was associated with significantly longer PFS than observation across all risk groups.
- The use of Lenalidomide as both induction and maintenance was associated with the best outcomes.

The Institute of Cancer Research

Lenalidomide maintenance was associated with improved PFS vs observation

bservation	Observation Lenalidomide						
	Subgroup	Category	n/N	n/N	HR (95%CI		P. (het)
	Sex	Male	204/327	197/459	0.56 (0.46, 0.68		0.222
		Female	120/191	94/271	0.45 (0.34, 0.59		
, 28-36)	Age	<=65 years	250/406	226/577	0.54 (0.45, 0.64		0.522
I, 54-76)		>65 years	74/112	65/153	0.50 (0.36, 0.71		
	t(4,14)	Present	25/27	26/45	0.36 (0.20, 0.64		0.124
		Absent	115/185	102/245	0.51 (0.39, 0.67) ——	
	t(14,16)	Present	5/6	4/8	0.17 (0.02, 1.17		0.339
		Absent	135/206	124/282	0.51 (0.40, 0.65		
	t(14,20)	Present	0/1	1/3	1.00 (1.00, 1.00) •	0.972
		Absent	140/211	127/287	0.51 (0.40, 0.65)	
	del(17p)	Present	10/13	19/26	0.48 (0.19, 1.20)	0.905
		Absent	130/199	109/264	0.48 (0.37, 0.62)	
	gain(1q)	Present	42/60	64/112	0.60 (0.40, 0.90) —	0.104
		Absent	98/152	64/178	0.39 (0.29, 0.54) ––	
	Cytogenetic Risk	SR	80/130	49/139	0.40 (0.28, 0.58) —	0.908
		HiR	38/57	47/112	0.44 (0.28, 0.69) —•—	
		UHiR	22/25	32/39	0.40 (0.21, 0.75)	
	Randomised treatmen	t CTD	134/194	115/236	0.60 (0.47, 0.77)	0.326
		CRD	147/207	117/260	0.46 (0.36, 0.59)	
		KCRD	43/117	59/234	0.55 (0.37, 0.82) ——	
	Response (Induction)	CR / VGPR	234/400	213/581	0.53 (0.44, 0.64) •••	0.884
		PR / MR	79/101	73/136	0.46 (0.34, 0.64) ——	
		SD / PD	3/4	4/5			
	Overall		324/518	291/730	0.52 (0.45, 0.61	• (
						0.10 0.20 0.50 1.0	2.0 5.0
108				Hazard ratio			

